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We analyze the dynamics of competitions with a large number of players. In our model, n players
compete against each other and the winner is decided basedon the standings: in each competition,
the mth ranked player wins. We solve for the long time limit of the distribution of the number
of wins for all n and m using scaling analysis of the nonlinear evolution equations, and nd three
di®erert scenarios. When the best player wins, the standings are most competitiv e as there is one-
tier with a clear di®erertiation betweenstrong and weak players. When an intermediate player wins,
the standings are two-tier with equally-strong players in the top tier and clearly-separated players

in the lower tier. Interestingly, the size and the strength of the upper-tier are nontrivial.

When the

worst player wins, the standings are least competitiv e as there is onetier in which all of the players
are equal. We conclude that controling the rank of the winner provides a way of controling social

inequalities.

PACS numbers: 87.23.Ge, 02.50.Ey, 05.40.-a, 89.65.Ef

I. INTR ODUCTION

Interacting particle or agen-based techniques are a
certral method in the physics of complex systems. This
methodology heavily relieson the dynamics of the agerts
or the interactions between the agerts, as de ned on a
microscopic level [1]. In this respect, this approac is
orthogonal to the traditional game theoretic framework
that is basedon the global utilit y or function of the sys-
tem, asde ned on a macroscopiclevel [2].

Sudch physics-inspired approaces, where agerts are
treated as particles in a physical system, have recertly
led to quartitativ e predictions in a wide variety of so-
cial and economicsystems[3{5]. Current areasof inter-
est include the distribution of income and wealth [6{9],
opinion dynamics [10{12], the propagation of innovation
and ideas [13], and the emergenceof social hierarchies
[14{17].

In the latter example,most relevant to this study, com-
petition is the mecdanism responsible for the emergence
of disparate social classesn human and animal comnu-
nities. A recertly introducedcompetition procesg14, 17
is basedon two-player competitions where the stronger
player wins with a xed probability and the weaker player
wins with a smaller probability [18]. This theory has
proved to be useful for understanding major team sports
and for analysis of gameresults data [5].

In the variety of models of economics,wealth distribu-
tion, and sccial diversity merntioned above, the dynam-
ics are basedon agent-agert interactions. Typically, one
agert bene't from suc interaction. How an agert, or
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competitor, fare in an interaction is typically a function
of their relative standingswith respect to the other com-
petitors. In some cases,the best agert benet and in
others, the worst benets. Howe\er, there are also situ-
ations where there is a payo®for agerts that are neither
the best nor the worst. This is the casefor example
in second-priceauctions where the second highest bid-
der wins [19]. Similarly, in politics certrists are often
rewarded, while onestaking on extreme positions are pe-
nalized. Motiv ated by this, we considerthe most general
multi-agent interaction where the rank of the agert who
benets from social interaction or competition can be
speci ed to be any position from best to worst.

We consider multi-pla yer gamesand addressthe situ-
ation where the outcome of a gameis completely deter-
ministic. Our modeling approac resenbles urn mod-
els [20, 21] that have been used extensively to model
economic growth and social dynamics [22, 23]. In our
model, a large number of players n participate in the
game, and in ead competition, the mth ranked player
always wins. The number of wins measuresthe strength
of a player. Furthermore, the distribution of the number
of wins characterizes the nature of the standings. We
addressthe time-evolution of this distribution using the
rate equation approac, and then, solve for the long-time
asymptotic behavior using scaling techniques.

We nd that there are three typesof standings. When
the best player wins, m = 1, there is a clear notion of
player strength; the higher the ranking the larger the
winning rate. When an intermediate player wins, 1 <
m < n, the standingshave two tiers. Playersin the lower
tier are well separated,but playersin the upper-tier are
all equally strong. Interestingly, the sizeand the strength
of the upper-tier are nontrivial asthey follow from roots
of polynomials of degreen + 1. When the weakest player
wins, m = n, the lower tier disappears and all of the
players are equal in strength. In this sense,when the



best player wins, the environment is most competitiv e,
and whenthe worst player wins it is the leastcompetitiv e.

When the number of players is large, the size of the
upper-tier changesin a cortinuous fashion. The top tier
includes all playersin one extreme caseand none of the
playersin the other extreme case. Thus, one of our main
conclusionis that by cortrolling the rank of the winning
player, one can control the emergen social hierarchy and
in particular, the sizeand the strength of the upper-tier.

The rest of this paper is organized as follows. We in-
troducethe model in sectionll. In Sectionlll, we analyze
in detail three-player competitions, addressingsituations
where the best, intermediate, and worst player wins, in
order. Wethen considergameswith an arbitrary number
of players and pay special attention to the largen limit
in Section V. We concludein section V.

Il. THE MUL TI-PLA YER MODEL

Our model system consistsof a large pool of N play-
ersthat compete against ead other in multi-pla yer com-
petitions. In ead game, n competitors are randomly
drawn from the total pool of players. These competitors
are ranked from best to worst according to the number
of wins, and the mth ranked competitor is awarded the
win. The win totals are updated accordingly and this
basic competition processis repeated ad in nitum.  Ini-
tially, all the players are equal as they all start with no
wins. Ties are handled in a completely random fashion:
when two or more players are tied, their relative rank-
ings are determined randomly. In other words, if k; is
the number of wins of the ith ranked competitor, i.e.,
ki, ¢¢¢, km , ¢¢¢, ki, then the result of the compe-
tition is as follows

(Kgj:roikmyioik) Uo(Kes oo km + 15000 kp): (L)

Initially , players start with no wins, k = 0.

We set the competition rate such that the number of
competitions in a unit time equalsthe total number of
players. Thence, ead player participates in n gamesper
unit time, and furthermore, the averagenumber of wins
hi simply equalstime

hi =t 2

At large times, it is natural to analyzethe winning rate,
that is, the number of wins normalized by time, x = k=t.
Similarly, from our de nition of the competition rate, the
averagewinning rate equalsone

i = 1: 3)

Our goalis to characterize how the number of wins, or
alternativ ely, the winning rate are distributed in the long
time limit. We note that sincethe players are randomly
chosenin ead competition, the number of gamesplayed
by a given player is a °uctuating quartity. Nevertheless,

since this processis completely random, °uctuations in
the number of gamesplayed by a given player scaleasthe
square-raot of time, and thus, these °uctuations become
irrelevant in the long time limit. Also, we consider the
thermodynamic limit, N ! 1 .

IIl. THREE PLA YER GAMES

We rst analyzethe three player case,n = 3, becausat
nicely demonstratesthe full spectrum of possibilities. We
detail the three scenarioswhere the best, intermediate,
and worst, playerswin in order.

A. Best player wins

Let us rst analyzethe casewherethe bestplayer wins.
That is, if the number of wins of the three players are
ki, ko, ks, thenthe gameoutcomeis as follows

(kiskaska) I (kg + 17ka; k): (4)

Let f (1) bethe probability distribution of playerswith

k', Owips at time t. This distribution is properly nor-

malized, | fx = 1, andit ewlvesaccordingto the non-
linear di®erence-di®eretal equation

HT
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Here,we u§edthe cumulativ e distributions Fy = r;olfj

and Gy = jlzkﬂ f; of playerswith tness smaller than
and larger than k, respectively. The two cumulativ e dis-
tributions are of courserelated, Fy + Gi; 1 = 1. The rst
pair of terms accourts for gameswhere it is unambigu-
ous who the top player is. The next pair accouns for
two-way ties for “rst, and the last pair for three way ties.
Each pair of terms contains a gain term and a lossterm
that di®er by a simple index shift. The binomial coe+-
ciernts accourt for the number of distinct ways pereareto
choosethe players. For example, there are f = 3 ways
to choosethe top player in the rst case. This master
equation should be solved subject to the initial condition
f«(0) = %0 and the boundary condition f; 1(t) = 0. One
canverify by summing ghe equationsthat the total prob-
ability is congened d‘it « fx = 0, and that the average
‘tness tki = | kfy ewlvesasin (2), drki=dt= 1.

For theoretical analysis, it is conveniert to study the
cumulativ e distribution Fy. Summing the rate equations
(5), we obtain closedequationsfor the cumulativ e distri-
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Here, we usedfy = Fyx+1 i Fk. This master equation is
subject to the initial condition Fy(0) = 1 and the bound-
ary condition F, 1(t) = O.

We are interested in the long time limit. Since the
number of wins is expected to grow linearly with time,
k » t, we may treat the number of wins as a cortinuous

variable, Fy; 1 = Fy i % + %gﬁ + ¢¢¢. Asymptotically,
since% / titand @E / ti?2 etc., second-and higher-
order terms becomenegligible compared with the rst
order terms. To leading order, the cumulativ e distribu-

tion obeysthe following partial di®ererial equation

@ | 2@ _
@+3F @ 0: (7

From dimensionalanalysisof this equation, we anticipate
that the cumulativ e distribution obeysthe scaling form

Fe(t) " ©(k=t) )

with the boundary conditions ©(0) = 0 and ©(1 ) = 1.
In other words, instead of concerrating on the number
of wins k, we focus on the winning rate x = k=t. In the
long time limit, the cumulative distribution of winning
rates ©(x) becomesstationary. Of course,the actual dis-
tribution of winning rates A(x) also becomesstationary,
and it is related to the distribution of the number of wins
by the scaling transformation

fi(t) 't TA(k=t) ©)

with A(x) = ©(x). Sincethe averagewinning rate equals
one (3), the distribution of winning rates must satisfy
Z,

1 dx x ©%(x):

(10)
0

Substituting the de nition (8) into the masterequation

(7), the stationary distribution satis es

OYX)[3©?%i x]= 0: (11)

There are two solutions: (i) The constart solu-

tion, ©(x) = const, and (ii) The algebraic solution

©s(x) = (x=3)'72. Invoking the boundary condition
limyi; ©(x) = 1we nd [Fig. 1]

(x=3)'*2 x-. 3
1 x, 3

B

©(x) = (12)

One can verify that this stationary distribution satis-
“es the constraint (10) sothat the averagewinning rate
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FIG. 1: The stationary distribution of winning rates (12) for
the casen = 3, m = 1.

equalsone. This result generalizesthe linear stationary
distribution found for two player games[17)].

Initially , all the players are identical, but by the ran-
dom competition process,someplayersend up at the top
of the standings and someat the bottom. Although our
model doesnot include the notion of intrinsic merit, the
random competition processis sutcient to generate a
hierarchy of playerswith di®eren strengths. Similar be-
havior was reported in a number of wealth distribution
studies [6{9]. The hierarchy in player strength directly
follows from the fact that the distribution of winning
ratesis nontrivial. Also, sinceA(x) » xi 2 asx ! 0,the
distribution of winning-rate is nonuniform and there are
many more players with very low winning rates. When
the number of playersis nite, a clear ranking emerges,
and every player wins at a di®erert rate. Moreover, after
atransient regime,the rankings do not changewith time.

Tie breakersplay animportant role at short times since
the playersareall tied initially . However, tie-breakersbe-
comeirrelevant in the long time limit becausehe number
of wins grows linearly with time and therefore, the prob-
ability of "nding two players with the same number of
wins becomesnegligible. This is seenfrom the fact that
the terms corresponding to situations werethere is a two-
or three-way tie for ‘rst do not a®ectthe scaling behav-
ior. Moreover, the scaling behavior is unique becauseit
is governed by the term that corresponds to situations
where the three players have distinct strengths. For the
samereason, it is independert of the initial conditions.
Tie-breaking rules are necessaryto break the initial ties
and they a®ecthow the distribution of the number of
wins approades a stationary form, but they do not af-
fect the "nal form of the stationary distribution.

B. Intermediate player wins

Next, we address the case where the intermediate
player wins,
(k1;kaiks) !

(k1; ko + L ka): (13)



Now, there are four terms in the master equation
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The rst pair of terms accourts for situations wherethere
are no ties and then the combinatorial prefactor is a
product of the number of ways to choosethe interme-
diate player times the number of ways to choosethe best
player. The next two pairs of terms accourt for situa-
tions where there is a two-way tie for best and worst,
respectively. Again, the last pair of terms accourts for
three-way ties. Theseequations consene the total prob-
ability, | fx = 1, and they are also consistert with (2).

Summing the rate equations (14), we obtain closed
equationsfor the cumulativ e distribution

dFy

il 6(Fk i Fk; 1)Fki 16k 1

(15)

i 3(Fki Fij 1)%(Fk; 1+ Gk 1)
i (Fki Fi; )%

For clarity, we use both of the cumulativ e distributions,
but note that this equation is de nitely closedin Fy be-
causeof the relation Gx = 1 Fg+1. Taking the con-
tinuum limit and keepingonly “rst-order derivatives,the
cumulativ e distribution obeysthe following partial di®er-
ertial equation &- + 6F (1 F)Z- = 0with the bound-
ary conditions Fg = 0 and limy;;  Fyx = 1. Substituting
the de nition of the stationary distribution of winning
rates (8) into this partial di®erertial equation, we arrive
at

OX)BO(Li ©) i x]=0; (16)
an equation that is subject to the boundary conditions
©(0) = 0 and limy;, ©(x) = 1. There are two so-
lutions: (i) The constart solution, ©(x) = const, and
(ii? ThE root of t@e second-orderpolynomial ©g(x) =

$1i 1j 2x=3. Invoking the boundary conditions,
we conclude[Fig. 2]
( 1 ’ 1 q 1 2
1 9. L2 <
T A R ¢ )
1 X > Xo:
As the nontrivial solution is bounded ©s(x) - 1=2, the

cumulativ e distribution must have a discortinuity. We
have implicitly assumedthat this discortinuity is located
at Xxg < 3=2.

The location of this discortinuity is dictated by the
averagenumber of wins constraint. Substituting the sta-
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FIG. 2: The stationary distribution of winning rates (17) for
n=3 m= 2

tionary distribution (17) into (10) then
Z,,
1= dx x ©(x) + xo[1i ©(Xo)]:
0

In writing this equality, we utilized the fact that the sta-
tionary distribution has a discortinuity at xo and that
the size of this discortinuity is 1j ©g. Integrating by
parts, we obtain an implicit equation for the location of
the discortinuity

VA

1=Xoj

Xo
dx ©(x): (18)
0
Substituting the stationary solution (17) into this equa-
tion and performing the integration, we nd after sewral
manipulations that the location qf the singularity satis-
“es the cubic equation X3 Xg 2" = 0. The location of

the discortinuity is therefore °
Xo = g

This completesthe solution (17) for the scaling function.
The size of the discortinuity follows from ©y =~ ©(Xo) =
1=4. Interestingly, the sizeand the strength of the upper
classare not trivial.

There is an alternative way to 'nd the location of the
discortinuity. Let us transform the integration over x
into an integration over © using the equality

Zy, Z o,
Xo©g = dx ©(x) +

(19)

dox(©): (20)
This transforms the equation for the location of the dis-
continuity (18) into an equation for the size of the jump
Z ©0

1=Xo(lj ©g) + dox(©): (21)
Substituting x(©) = 6©(1j ©) we arrive at the cubic
equation for the variable ©y, 1= 6C | 9©3 + 4C€%. The
relevant solution is ©y = %, from which we conclude
Xo = 9=8. For three-player games, there is no partic-
ular advantage for either of the two approaces: both



(18) and (21) involve cubic polynomials. Howevwer, in
general, the latter approad is superior becauseit does
not require an explicit solution for ©(x).

The scalingfunction corresponding to the win-number
distribution is therefore

; ~ 1 |J' . 2 ﬂi 1=2 H . ﬂ .
A(x) = 3 1j §X

where +(x) denotesthe Kronecker delta function. The
win-number distribution cortains two componerts. The
“rst is a nontrivial distribution of players with winning
rate X < Xg and the secondre®ects that a nite fraction
of the players have the maximal winning rate x = Xg.
Thus, the standings have a two-tier structure. Players
in the lower tier have di®eren strengths and there is a
clear di®ereriation among them. Playersin the upper-
tier are essetially equalin strength asthey all win with
the samerate. A fraction ©y = % belongsto the lower
tier and a complemenary fraction 1j ©g = % belongsto
the upper tier. Interestingly, the upper-tier hasthe form
of a condensate. We note that a condensate,located at
the bottom, rather than at the top asis the casehere,
was found in the diversity model in Ref. [17].

C. Worst player wins

Last, we addressthe casewhere the worst player wins
[18, 24]
(k1;ka;ka) !

Here, the distribution of the number of wins ewlvesac-
cording to

(k1 k2, ks + 1): (22)

TR
d 3
G = 1 (kaGEai fGh) (23)

Mol ¢

+ 2 fk2i 1Gk11i kaGk

not
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This equation is obtained from (5) simply by replacing
the cumulativ edistribution Fy with Gi. The closedequa-
tion for the cumulativ e distribution is now

dF
=t = 13Fci F1)GE (24)
i 3(Fki Fk; 1)°Gk; 1
i (Fei Fig0)*
In the continuum limit, this equation becomes

@+ 3(1; F)?2Z = 0, and consequetly, the stationary
istribution satis es
OB ©?2%i x]=0: (25)

Now, there is only one solution, the constart ©(x) =
const, and becauseof the boundary conditions ©(0) = 0
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FIG. 3: The stationary distribution of winning rates (26) for
the casen = m = 3.

and limyn ©(x) = 1, the stationary distribution is a
step function: ©(x) = 1 for x > xo and ©(x) = 0 for
X < Xg. In other words, ©(x) = £(X j Xg). Substitut-
ing this form into the condition (10), the location of the
discortinuity is simply xo = 1, and therefore [Fig. 3]

O(x) = £(xi 1) (26)

where £( x) is the Heaviside step function. When the
worst player wins, the standings no longer contain a
lower-tier: they consist only of an upper-tier where all
players have the samewinning rate, A(x) = (x| 1).

IV. ARBITRAR Y NUMBER OF PLA YERS

Let us now considerthe most generalcasewhere there
aren playersand the mth ranked player wins asin (1). It
is straightforward to generalizethe rate equationsfor the
cumulativ e distribution. Repeating the scaling analysis
above, Egs. (11) and (16) for the stationary distribution
(8) generalizeas follows:

ox)ce" @i oMty x]= 0 (27)
The constart C equalsthe number of ways to choosethe
mth ranked player times the number of ways to choose
the mj 1 higher ranked players
A o

€= mi 1 _(nim)!(.mil)!:

(28)

Again, there are two solutions: (i) The constart solu-
tion, ©Yx) = 0, and (ii) The root of the (nj 1)th-order
polynomial

co" ™M1 oMit=x (29)
We now analyzethe three caseswherethe best, an inter-
mediate, and the worst player win, in order.
Best player wins (m = 1): In this case,the stationary
distribution can be calculated analytically,

(x=n)=0i D x. n;
1 X :

B

O(x) = (30)



One can verify that this solution is consistert with (3).
We seethat in general,whenthe bestplayer wins there is
no discortinuity and ©y = 1. As for three-player games,
the standings consist of a single tier where someplayers
rank high and somerank low. Also, the winning rate
of the top players equalsthe number of players, xo =
n. In general, the distribution of the number of wins is
algebraic.

Intermediate player wins (1< m < n): Basedon the
behavior for three player games,we expect

©s(X) X < Xop;
1 X . Xp:

B

©(x) = (1)

Here, ©s(x) is the solution of (29). Numerical simula-
tions con rm this behavior [Fig. 4]. Thus, we conclude
that in general,there are two tiers. In the upper tier, all
players have the samewinning rate, while in the lower
tier di®erert playerswin at di®erert rates. Generally, a
“nite fraction ©y belongsto the lower tier and the com-
plemertary fraction 1i ©y belongsto the upper tier.

Our Monte Carlo simulations are performed by simply
mimicking the competition process.The systemconsists
of a large number of playersN, all starting with no wins.
In eadh elemenal step, n players are chosenat random
and ranked accordingto strength. Then, the mth ranked
player is awarded a win (tied playersare rankedin aran-
dom fashion). Time is augmerted by 1=N after ead
such step. This elemenal step is then repeated. Since
this simulation procedureinvolvesindividual agerts and
since the players are chosenrandomly, this is a Monte
Carlo method for solving the master equations. While it
is also possibleto usedirect numerical integration meth-
ods, we presert the Monte Carlo results becausethis
method also allows simulation of systemswith a small
number of agerts.

The parametersxy and ©y characterizetwo important
properties: the maximal winning rate and the sizeof eath
tier. Thus, wefocuson the behavior of thesetwo parame-
ters and pay special attention to the large limit. Substi-
tuting the stationary distribution (31) into the constraint
(10), the maximal winning rate xq follows from the very
sameEg. (18). Similarly, the sizeof the lower tier follows
from Eqg. (21). In this case,the latter is a polynomial of
degreen + 1, so numerically, one solves rst for ©; and
then uses(29) to obtain xo. We veri ed thesetheoretical
predictions for the casesn = 4 and n = 10 using Monte
Carlo simulations [Fig. 4].

For completeness,we mertion that it is possible to
rewrite Eq. (21) in a compact form. Using the de nition
of the Beta function

Zl
do@" ™(1; o)mi?

B(ni m+ 1,m) (32)
0
(ni mi(m;j 1)!
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FIG. 4: The stationary distribution of winning rates ©(x) for
n = 4 (top) and n = 10 (bottom). Shown are Monte Carlo
simulation results with N = 10° particles at time t = 10°.
The circles are the theoretical predictions for the maximal
winning rate Xo and the size of the lower tier ©q.

we relate the de nite integral above with the combinato-
rial constart in (28). Substituting the governing equation
for the stationary distribution (29) into the equation for
the size of the lower-tier (21) gives
Z g,
Cil=0) "1 ©)"+ do@" ™(1; ©)™Mi 1 (33)

Using the relation (32), we arrive at a corveniert equa-
tion for the size of the lower tier ©q
z 1
doo" M(1j @M t=@pi M(1i ©)™:
©o

(34)

We conclude that in general, the size and the strength
of the upper-tier are non-trivial as they are roots of a
polynomial of degreen + 1.

Let us considerthe limit n! 1 andm ! 1 with
the ratio ® = m=n kept constart. For example,the case
® = 1=2 corresponds to the situation where the median
player is the winner. To solve the governing equation for
the stationary distribution in the largen limit, we esti-
mate the conmbinatorial constart C using Eq. (28) and
the Stirling formula n! » (2¥n)72(n=e)". Eq. (29) be-
comes

r T“ © ﬂnjmuli ©ﬂmil

—_— » X
21 ® 1; ® ®

(35)



Taking the power 1=n on both sides of this equation,
and then the limit n! 1 , we arrive at the very simple
equation,
3 ’ 3 ’
© L® 1; © ®_ 1
1i ® ® S
By inspection, the solution is constart, © = 1j ®. Using
©9 = 1j ® and employing the condition hxi = 1 yields
the location of the condensate

(36)

Xo = 1=@® © =1 ®: (37)
This result is consistet with the expected behaviors
Xo! 1 as®! 0and xo(®= 1) = 1 (seethe worst
player wins discussionbelow). Therefore, the station-
ary distribution contains two stepswhen the number of
players participating in eady gamediverges[Fig. 5]

8
20 x<0

©(x)=_1i ® 0< X< ® 1 (38)
1 ® 1< x

The stationary distribution corresponding to the num-
ber of wins therefore consists of two delta-functions:
AX) = (1] ®Hx)+ ®(x i 1=®. Thus, asthe number
of players participating in a game grows, the winning
rate of playersin the lower tier diminishes, and eventu-
ally, they becomeindistinguishable.

For example, for n = 10, the quartity ©q is roughly
linear in ® and the maximal winning rate Xg is roughly
proportional to ® ! [Fig. 4]. Nevertheless, for moder-
ate n there are still signi cant deviations from the limit-
ing asymptotic behavior. A Ba_ned asymptotic analysis
shavs that ©yj (1i ® » @1 ®) Inn=n and that
Xo' (Li ©p)i ! [25]. Therefore, the corvergenceis slow
and nonuniform (i.e., ®dependert). Despite the slow
corvergence,the in nite- n limit is very instructiv e as it
shaws that the structure of the lower-tier becomedrivial
as the number of playersin a game becomesvery large.
It also shaws that the size of the jump becomespropor-
tional to the rank of the winning player.

When the number of playersis large, the sizeand the
strength of the upper tier changesin a cortin uous fash-
ion. When the top ranked player wins it contains all of
the players, while when the bottom ranked player wins
in contains none of the players. Since the size and the
strength of the top-tier changesin a cortin uous fashion,
these multi-pla yer dynamics provide a model system in
which one can cortrol the nature of the social structure.

It is also possibleto analytically obtain the station-
ary distribution in the limit of small winning rates,
x ! 0. Sincethe cumulativ edistribution issmall,©! 0,
the governing equation (29) can be approximated by
CoO"i™m = x. As a result, the cumulativ e distribution
vanishesalgebraically

O(X) » xaim; (39)

asx ! 0. This behavior holds aslong asm < n.

1 1/a

FIG. 5: The innite- n limit. From Eq. (37), the points
(X0;©0) all lie on the curve © = (x| 1)=x (dashed line).

Worst player wins (m = n): In this case,the roots of
the polynomial (29) are not physical becausethey cor-
respond to either monotonically increasing solutions or
they are larger than unity. Thus, the only solution is
a constart and following the same reasoning as above
we concludethat the stationary distribution is the step
function (26). Again, the upper tier disappearsand all
playershave the samewinning rate. In other words, there
is very strong parity.

We note that while the winning rate of all players ap-
proachesthe samevalue, there are still small di®erences
between players. Based on the behavior for two-player
games,we expect that the distribution of the number of
wins follows a traveling wave form Fy(t) ! U(kj t) as
t! 1 [5]. As the di®erencesamong the players are
small, the ranking corntinually ewlves with time. Such
analysisis beyond the scope of the approac above. Nev-
ertheless,the dependenceon the number of players may
be quite interesting.

Let usimagine that wins represen wealth. Then, the
strong players are the rich and the the weak players are
the poor. Competitions in which the weakest player wins
mimic a strong welfare mecanism where the poor ben-
e ts from interactions with the rich. In suc a scenario,
social inequalities are small.

V. CONCLUSIONS

In conclusion, we have studied multi-player games
wherethe winner is decideddeterministically basedupon
the ranking. We focusedon the long time limit where sit-
uations with two or moretied playersare generallyirrele-
vant. We analyzedthe stationary distribution of winning
rates using scaling analysisof the nonlinear master equa-
tions.

The shape of the stationary distribution re°ects three
qualitativ ely di®eren typesof behavior. When the best
player wins, there are clear di®erencedbetweenthe play-
ersasthey advanceat di®eren rates. When an interme-
diate player wins, the standings are organizedinto two
tiers. The upper tier has the form of a condensatewith



all of the top players winning at the samerate; in con-
trast, the lower tier players win at di®erern rates. In-
terestingly, the samequalitativ e behavior emergeswhen
the secondplayer wins as when the secondto last player
wins. When the worst player wins, all of the players are
equal in strength.

The sizeand the strength of the top-tier are the most
signi cant characteristic of the dynamics. These quan-
tities are found by imposing a condition for the average
winning rate, a quantity that plays the role of an inte-
gral of motion. These quartities are generally nontrivial
asthey follow from roots of polynomials of degreen + 1.

The behavior in the limit of anin nite number of play-
ersgreatly simpli es. In this limit, the changefrom upper
tier only standingsto lower tier only standingsoccursin a
cortinuousfashion. Moreover, the sizeof the upper tier is
simply proportional to the rank of the winner while the
maximal winning rate is inversely proportional to this
parameter.

In the context of sports competitions, theseresults are
consistent with our intuition. We view standings that
clearly di®ereriate the playersasa competitiv e erviron-
mert. Then, having the best player win results in the
most competitive ervironment, while having the worst
player win leads to the least competitive ervironment.
As the rank of the winning player is varied from best to
worst, the ervironment is gradually changedfrom highly
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competitiv e to non-competitiv e. This is the casebecause
the size of the competitiv e tier decreasess the strength
of the winning player declines.

In the context of sacial dynamics, theseresults suggest
a way of cortroling social structure: by controling the
rank of the agert bene ting from sccial interactions, one
canconrol the sccial structure and in particular, the size
and the strength of the upper class.

Our asymptotic analysis focuseson the most basic
characteristic, the winning rate. However, there are in-
teresting questionsthat may be asked whentiers of equal-
strength players emerge. For example, the structure of
the upper tier can be further explored by characterizing
relative °uctuations in the strengths of the top players.
Similarly, the dynamical ewlution of the ranking when
all players are equally strong may be interesting as well.
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